|
Mathematische Knobelaufgabe Über sechs Ecken kennt man jeden auf der Welt!
|
|
 21 Feb 2007, 22:19
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
Es stand die These im Raum: Über sechs Ecken kennt man jeden auf der Welt.
Die daraus resultierende, interessante Frage: Wieviele Personen müßte dafür jeder kennen?Es wird angenommen: - Die Population der Erde beträgt 6.4 Mrd Menschen
- Keine redundanten Kontakte
- Jeder hat gleich viele Kontakte (oder für die Betrachtung nicht relevante zusätzliche redundante Kontakte)
Auf was für Ergebnisse kommt ihr bei der Rechenaufgabe? (Und für die, die zu faul zum Rechnen sind: Was schätzt ihr?) (Zur Kontrolle: der Wert ist durchaus nicht utopisch. Da falsche Ansätze zu relativ ähnlichen Ergebnissen führen können, möglichst mit Kommastelle) Anmerkung: die These drückt aus, daß du mit maximal fünf Zwischenkontakten jede Person auf der Welt kennst.
|
|
|
Antworten(1 - 14)
|
|
 21 Feb 2007, 22:44
|

3. Schein   
Punkte: 251
seit: 06.10.2006
|
ich komm auf 42,6
|
|
|
|
|
 21 Feb 2007, 23:49
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
@wombat1st: Du hast die Fragestellung invertiert und hast ermittelt, wieviele Ecken man benötigt, wenn jeder sechs Freunde hat. Aber die Anzahl der Freunde ist gesucht, und die Anzahl der Ecken ist sechs.
(Kleines Beispiel: wenn wir uns direkt kennen, bin ich die erste Ecke für dich. Meine Freunde sind die zweite Ecke für dich)
Abgesehen davon hat deine Lösung noch einen kleinen, aber entscheidenden Fehler im Ansatz ;-)
|
|
|
|
|
 21 Feb 2007, 23:50
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
Zitat(Fuchs @ 21 Feb 2007, 22:33) heyyyyyy... ich hab hier gaaaaanz viele Zettel, die auch so aussehen   Aber nicht so schöne Werbezettel von Krupp Stahl ;-)
|
|
|
|
|
 22 Feb 2007, 00:02
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
Ich habe die These nicht aufgestellt ;-)
|
|
|
|
|
 22 Feb 2007, 00:31
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
Der kleine aber nicht unrelevante Fehler von deines Inverslösungsansatzes ist hier immer noch da ;-) Noch mal gut durchdenken ... ;-)
|
|
|
|
|
 22 Feb 2007, 00:55
|

~PAPA~       
Punkte: 1492
seit: 11.04.2006
|
Zitat(wombat1st @ 21 Feb 2007, 23:05) Problem erkannt und gebannt. Ich betrachte den Zahlenwert als trivial, da ihn jeder selber ausrechnen kann  mir fehlt gerade mein TR aber x+x²+x³+x^4+x^5+x^6=6,4Mrd. ist der Lösungsansatz. @rene du hattest recht. mein beiden denkfehler waren die gezählten leute (im photo unten sind die römischen zahlen die beziehungsebenen die am ende 6 ergeben) und natürlich mein verständnis für die gesuchte lösung   Jo, den Ansatz bestätige ich mal und dann kommt auch 43 raus  edit: Zitat(René @ 21 Feb 2007, 23:31) Der kleine aber nicht unrelevante Fehler von deines Inverslösungsansatzes ist hier immer noch da ;-) Noch mal gut durchdenken ... ;-)  ausser dass er selber sich nich mit zu den 6,4 Mrd zählt ..? Dieser Beitrag wurde von mArVinTheRobot: 22 Feb 2007, 00:57 bearbeitet
--------------------
Ich spreche fließend ironisch.
Viele Leute kommen mit meinem Humor einfach nicht klar.
Jule: Mit dir hab ich echt ma ein glückliches händchn gehabt :D
|
|
|
|
|
 22 Feb 2007, 01:03
|

3. Schein   
Punkte: 167
seit: 04.10.2005
|
Zitat(mArVinTheRobot @ 21 Feb 2007, 23:55) Jo, den Ansatz bestätige ich mal und dann kommt auch 43 raus  edit: ausser dass er selber sich nich mit zu den 6,4 Mrd zählt ..?  Nein der nicht. Dieser "Fehler" machte bei meinem Cassio zur Lösungsbestimmung keine sichtbare Nachkommastelle aus ... trotzdem lobenswert, wer sich selber auch zur Weltbevölkerung zählt ;-)
|
|
|
1 Nutzer liest/lesen dieses Thema (1 Gäste)
0 Mitglieder:
|