@rene: Versteh ich nicht. Du musst doch nicht den Baum rückwärts durchlaufen, um von einer bestimmten Person zu einer anderen bestimmten Person zu kommen. Lediglich wenn du IMMER den egozentrischen Ansatz wählst, und festlegst, dass der Baum im 6ten Knoten sein Ende hat. Was er aber reell gesehen nicht hat, weil ja niemand keine Freunde hat, bloß weil du ihn schon über 6 Ecken kennst. Man spannt also den Baum für jede Person Y neu auf und läuft von dieser Startposition immer nach unten im Baum.
Von daher gibt es keinen Unterschied, ob du sagst "man" kennt jeden über 6 Ecken, oder jeder kennt jeden über 6 Ecken.
Die Hypercube Lösung kommt mir immer noch nicht so recht gut vor. Sie besagt, dass jeder mit jedem über 5 Kanten verbunden ist, wenn er nur 36 Freunde besitzt. Da wir den Baumansatz für eine Person (also mich z.B.) als richtig akzeptieren kann ich das ganze leicht wiederlegen. Möchte ich (Mensch Nr. 1) zum allerletzten Menschen (Nr. 6,4 Milliarden) vordringen, allein über 5 Kanten, und nehme ich an (wie auch in der Aufgabenstellung), dass alle Freunde einzigartig sind, und davon jeder 36 besitzt, so befinden sich in dem klassischen Baum, den ich aufspanne knapp 62 Millionen Menschen. Da kann also etwas nicht passen.
Ich kann einfach nicht mehr Menschen adressieren. Das funktioniert nur, wenn ich irgendwelche weiteren Vorbedingungen mit einschiebe, zum Beispiel, dass wenn A C über B kennt, A gleichzeitig auch C direkt kennt. Mit dieser Vorbedingung können wir aber auch gleich postulieren: jeder kennt jeden. Ohne Ecken ohne Kanten.
@marv: x^0 + x^1 + x^2 +x^3 + x^4 + x^5 + x^6 = 6,4 Mrd. == Alle Knoten und Blätter im Baum sind insgesamt 6,4 Mrd. x^6 = 6,4 Mrd == Nur die Blätter des Baumes sind 6,4 Mrd. x^6 - x^5 - x^4 - x^3 - x^2 - x^1 - x^0 = 6,4 Mrd. == Blätter minus Knoten sind 6,4 Mrd., die Blätter liegen also insgesamt über 6,4 Mrd.
Welcher Ansatz auch immer gut ist, zum Ausrechnen des Baumes, man kommt doch mit den Lösungen darauf, dass es, auf Menschen gerundet, immer 43 ergibt und die Anzahl der Knoten verglichen mit der Anzahl der Blätter relativ irrelevant ist und deren Einfluß für große X deutlich sinkt. Im vorliegenden Fall haben wir ein Verhältnis von Knoten zu Blättern von 1 zu 42.